Measure zero sets whose algebraic sum is non - measurable
نویسنده
چکیده
In this note we will show that for every natural number n > 0 there exists an S ⊂ [0, 1] such that its n-th algebraic sum nS = S + · · ·+ S is a nowhere dense measure zero set, but its n+1-st algebraic sum nS+S is neither measurable nor it has the Baire property. In addition, the set S will be also a Hamel base, that is, a linear base of R over Q. We use the standard notation as in [2]. Thus symbols R, Q, Z, and c stand for the set of real numbers, the set of rational numbers, the set of integers, and the cardinality of R, respectively. The set of natural numbers {0, 1, 2, . . . } will be denoted by either N or ω, and |X| will stand for the cardinality of a set X. For A,B ⊆ R we put A + B = {a + b : a ∈ A & b ∈ B} and LINQ(A) will stand for the linear subspace of R over Q spanned by A. In addition for 0 < n < ω symbol [X] will stand for the family of all n-element subsets of X and nA for the n-th algebraic sum of A, that is,
منابع مشابه
Completeness results for metrized rings and lattices
The Boolean ring $B$ of measurable subsets of the unit interval, modulo sets of measure zero, has proper radical ideals (for example, ${0})$ that are closed under the natural metric, but has no prime ideal closed under that metric; hence closed radical ideals are not, in general, intersections of closed prime ideals. Moreover, $B$ is known to be complete in its metric. Togethe...
متن کاملThe sum-annihilating essential ideal graph of a commutative ring
Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...
متن کاملThe Algebraic Sum of Sets of Real Numbers with Strong Measure Zero Sets
We prove the following theorems: 1. If X has strong measure zero and if Y has strong first category, then their algebraic sum has property s0. 2. If X has Hurewicz’s covering property, then it has strong measure zero if, and only if, its algebraic sum with any first category set is a first category set. 3. If X has strong measure zero and Hurewicz’s covering property then its algebraic sum with...
متن کاملMeasure zero sets with non - measurable sum
For any C ⊆ R there is a subset A ⊆ C such that A + A has inner measure zero and outer measure the same as C + C. Also, there is a subset A of the Cantor middle third set such that A+A is Bernstein in [0, 2]. On the other hand there is a perfect set C such that C + C is an interval I and there is no subset A ⊆ C with A + A Bernstein in I.
متن کاملNonmeasurable algebraic sums of sets of reals
We present a theorem which generalizes some known theorems on the existence of nonmeasurable (in various senses) sets of the form X+Y . Some additional related questions concerning measure, category and the algebra of Borel sets are also studied. Sierpiński showed in [14] that there exist two sets X, Y ⊆ R of Lebesgue measure zero such that their algebraic sum, i.e. the set X + Y = {x + y : x ∈...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001